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Abstract: Consider the random open balls Bn(ω) with their centers ωn independently and uniformly distributed
over the d-dimensional unit cube [0, 1]d and with their radii rn decreasing to zero. In this paper, we show that with
probability one Hausdorff dimension of the random cut-out set [0, 1]d − ⋃∞

n=1 Bn(ω) is at most d − β(d)cd

p and

frequently equals d− β(d)cd

p when rn = c
np for some 0 < c < d

√
β(d) and pd = 1.
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1 Introduction

The term fractal was first introduced by Mandelbrot in
1975 usually refers to sets which, in some sense, have
a self-similar structure. The Cantor ternary set is one
of the best known and most easily constructed fractals.
Mandelbrot and others have modelled a great deal of
real objects by using such fractals [1, 2]. But real phe-
nomenons are more complex, such fractals often are
not satisfactory and should be replaced by so called
random fractals as pointed out in [2]. Indeed, some
form of self-similarity is common in random fractals,
in particular those arising from stochastic processes.

Random fractals occured as sets derived from the
realizations of non-differentiable stochastic processes
and fields, such as the zeros of Brownian motion and
the zeros of other recurrent processes with indepen-
dent stable increments. Studying random fractal as-
pects is an important topic of modern stochastic ge-
ometry. Within stochastic geometry the requirement
arises to possess the “pure geometric” constructive
examples of random fractals, generated without the
aid of random fields, which are easily to handle. In
this direction, the earliest investigation occurred in
[3]. In [3], Mandelbrot constructed a random set in
real line by “cutting out ” a sequence of random in-
tervals with decreasing length, the so-called random
cut-out set. His dimension calculations were based
on a birth and death process. Subsequently, Zähle
in [4] considered the generalization of Mandelbrot’s
cutout model to higher dimension, in which the inter-
vals are cut out are replaced by essentially more arbi-
trary random open sets. He gave many generalizations
in terms of Hausdorff dimension. For other pure ge-

ometric constructive examples, we refer to [5-13] and
the references therein. The present paper is devoted to
the study on the special cases of Zähle cutout model.

Given a probability space (Ω,F , P ) and let
{rn}n≥1 be a sequence of positive real numbers which
is decreasing to zero. Let

Bn(ω) := B(ωn, rn) := {x ∈ [0, 1]d : |ωn−x| < rn}
be a random open ball, where | · | denote the Euclidean
distance in Rd and {ωn}n≥1 is a sequence of i.i.d.
random variables which are defined on (Ω,F , P ) and
take values in the unit cube [0, 1]d. For ω ∈ Ω,
we define K0 = K0(ω) = [0, 1]d, and recurrently,
Kn(ω) = Kn−1(ω) − Bn(ω) for n ≥ 1. Then
{Kn(ω)}n≥1 be a sequence of random compact sets
and Kn+1(ω) ⊂ Kn(ω). We shall call

K(ω) =
∞⋂

n=0

Kn(ω) = [0, 1]d −
∞⋃

n=1

Bn(ω)

a random cutout set. Note that this construction differs
from cutout set of [14] in that open balls removed may
overlap.

In this paper we are interested in the case
that all ωn are uniformly distributed on [0, 1]d and∑∞

n=1 rd
n = ∞ with rn < 1

2 . As we shall show in
Proposition 6 of Section 3, in this case the Lebesgue
measure of set K(ω) is almost surely (a.s. for short)
zero. In [10], Falconer proved that with probability
one the Hausdorff dimension of K(ω) is at most 1− t
and frequently equals 1−t when rn = c

n with 0 < c <
1 and d = 1, in which every open ball is a open inter-
val. We shall determine the Hausdorff dimension of
K(ω) in the case rn = c

np with 0 < c < d
√

β(d) and
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pd = 1, where β(d) = Γ(1
2)d/Γ(d

2 + 1) is the volume
of an d dimensional ball of diameter 1. Our method
is pure measure-geometric is different from the study
via stochastic process in [3]. The main result of this
paper is the following assertion.

Theorem 1. Suppose K(ω) is a random cut-out set
defined as above. Then

P{dimH K(ω) ≤ dimBK(ω) ≤ d− β(d)cd

p
} = 1,

and P{dimH K(ω) = d− β(d)cd

p } > 0, where dimH

denotes the Hausdorff dimension.

Another interesting motivation of studying ran-
dom cut-out sets is that it is helpful to the study of
Dvoretzky’s problem and related topics, see [3, 15].
Dvoretzky’s problem [16] was posed in 1956. Sub-
sequently, it attracted the attention of Levy, Kahane,
Erdos, Billard, Mandelbrot, et al. In 1972, L. Shepp
[17, 18] gave a complete solution to this problem. For
further information on Dvoretzky’s problem, please
refer to [19]. One can see [20-23] and the references
therein for more recent developments.

The rest of this paper is organized as follows.
Section 2 is the preliminaries. In Section 2.1, we re-
call the potential theoretic method. In Section 2.2, we
recall the definition of Martingale and the related con-
vergence theorems. In Section 2.3, we introduce the
notion so called “random martingale measure”. The
proof of Theorem 1 is given in Section 3.

2 Preliminary
2.1 Potential Theoretic Method
We recall a technique for calculating Hausdorff di-
mensions that is widely used both in theory and in
practice. Let s ≥ 0, we call

Is(µ) =
∫

Rd

∫

Rd

1
|x− y|s dµ(x) dµ(y)

s-energy of a measure µ on Rd. Denoting the s-
dimension Hausdorff measure by Hs. The following
Lemma can be seen in many literatures, here we refer
reader to see [10, 11] for more details.

Lemma 2. Suppose E ⊆ Rd. (a)If there exists a finite
measure µ on E with Is(µ) < ∞ and µ(E) > 0, then
Hs(E) = ∞ and dimH E ≥ s. (b)If E is a Borel
set with Hs(E) > 0, then for any t ≤ s there exists a
finite measure µ on E such that It(µ) < ∞.

2.2 Martingale and Convergence Theorems
We recall that the definition of Martingale and the re-
lated convergence theorems [24]. Let (Ω,F , P ) be
a probability space and F0 ⊂ F1 ⊂ · · · an in-
creasing sequence of sub σ−fields of F . Assume
that for each k, Xk is an integrable random variable
on (Ω,Fn, P ). We say that {Xk}k≥0, or more pre-
cisely, {(Fk, Xk)}k≥0 a martingale if for all k =
0, 1, 2, · · · , E(Xk+1|Fk) = Xk a.s., a submartin-
gale if E(Xk+1|Fk) ≥ Xk a.s., a supermartingale if
E(Xk+1|Fk) ≤ Xk a.s.. We say that {Xk}k≥0 is a
nonnegative supermartingale if it is a supermartingale
with Xk ≥ 0 for all k, a L2-bounded martingale if it
is a martingale with sup0≤k<∞ E(X2

k) < ∞.

Lemma 3. [24] Suppose {Xk}k≥0 is a nonnegative
supermartingale described as above. Then there ex-
ists a non-negative random variable X on (Ω,F , P )
such that Xk converges to X a.s..

Lemma 4. [24] Suppose {Xk}k≥0 is a L2−bounded
martingale described as above. Then there exists a
nonnegative random variable X on (Ω,F , P ) such
that Xk converges to X a.s., and E(X) = E(Xk) for
any k ≥ 0.

In this paper it is enough to think of E(Xk+1|Fk)
as the mean of Xk+1 calculated as though
X0, X1, . . . , Xn are already known. In this sense,
E(Xk+1|Fk) = Xk means that whatever happens in
the first k steps, the expectation of Xk+1 nevertheless
equals Xk.

2.3 Random Martingale Measure
Let B(Rd) denote the family of all Borel sets of Rd.
We say that µ is a random measure with respect to
probability space (Ω,F , P ) if µ isF-measurable, that
is, µ is a function which associates with each ω ∈ Ω a
measure µω on Rd such that, for all A ∈ B(Rd), the
function

ω → µω(A)

from Ω to [0,+∞) is F-measurable.
Denoting the Lebesgue measure by L on Rd. Let

{µn}n≥0 is a sequence of random measures with re-
spect to probability space (Ω,F , P ). We say that
{µn}n≥0 is a random martingale measure, if it sat-
isfying:

(1) µ0 is a finite, deterministic measure with
bounded support;

(2) µn is absolutely continuous with respect to L
a.s. for all n;

(3) there exists an increasing sequence of sub
σ−fields Fn of F such that µn is Fn-measurable.
Moreover, for all A ∈ B(Rd),

E(µn+1(A)|Fn) = µn(A);
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(4) there exists a constant C > 0 such that

µn+1 ≤ Cµn a.s.

for all n.
By Lemma 3, we have

Lemma 5. If {µn}n≥0 is a random martingale mea-
sure, then almost surely, the sequence µn is weakly
convergent. Denote the limit by µ.

3 Proof of Theorem 1
Recall that (Ω,F , P ) is a given probability space and

K(ω) = [0, 1]d −
∞⋃

n=1

Bn(ω)

is a random cutout set, where Bn(ω) := B(ωn, rn)
is a random open ball with radius rn and center ωn,
{rn}n≥1 is a sequence of positive real numbers which
decreasing to zero and {ωn}n≥1 is a sequence of i.i.d.
random variables on (Ω,F , P ) with values in [0, 1]d.
In the rest of paper, we will always assume that all ωn

are uniformly distributed on [0, 1]d. Let E(X) denote
the expectation of a random variable X on (Ω,F , P ).
Firstly, we have

Proposition 6. (a) If
∑∞

n=1 rd
n < ∞, then

P (L(K(ω)) > 0) > 0; (b)If
∑∞

n=1 rd
n = ∞, then

P (L(K(ω)) = 0) = 1.

Proof. Denote by χA the characteristic function of a
set A. By Fubini Theorem, we have

E(L(K(ω)))

=
∫
L(

∞⋂

n=0

([0, 1]d −Bn(ωn(ω), rn)))dP (ω)

= lim
m→∞

∫
L(

m⋂

n=0

([0, 1]d −Bn(ωn(ω), rn)))

dP (ω)

= lim
m→∞

∫ ∫ m∏

n=0

χ[0,1]d−Bn(ωn(ω),rn))(y)

dydP (ω)

= lim
m→∞

∫ ∫ m∏

n=0

χ[0,1]d−Bn(ωn(ω),rn))(y)

dP (ω)dy

= lim
m→∞

m∏

n=0

(1− β(d)rd
n)

≤ lim
m→∞ e−

Pm
n=0 β(d)rd

n .

Since if
∑∞

k=1 rd
n < ∞ then 0 < E(Ld(K(ω))) <

∞, if
∑∞

k=1 rd
n = ∞ then E(Ld(K(ω))) = 0, the

desired result follows. This completes this proof.

In this paper it is convenient to identify [0, 1]d
with the d-dimensional torus. For example, we iden-
tify the corresponding edge of unit square [0, 1]2 on
plane, that is, if ωn = x = (x1, x2)(0 ≤ x1, x2 < rn)
is a center of open disc Bn(ω) showed as Figure
1(a), then Bn(ω) is taken to consist of four fields that
are showed by grey(Bn(ω) ∩ [0, 1]2), red(

(
(Bn(ω) +

(1, 1)
) ∩ [0, 1]2), blue(

(
Bn(ω) + (0, 1)

) ∩ [0, 1]2)
and green(

(
Bn(ω) + (1, 0)

) ∩ [0, 1]2) in Figure
1(b) respectively. For x = (x1, x2, · · · , xd), y =

x xx x

Figure 1: d = 2

(y1, y2, · · · , yd) ∈ [0, 1]d, we write

d(x, y) =

√√√√
d∑

i=1

(min(|xi − yi|, 1− |xi − yi|))2,

that is the distance between x and y when identifying
[0, 1]d with the d-dimensional torus. In particular, for
d = 1, d(x, y) = min{|x − y|, 1 − |x − y|}, that is
the distance between x and y with 0 and 1 identified.
Next, we focus our intention on our research which
is presented in the introduction: rn = c

np with 0 <

c < d
√

β(d) and pd = 1. In this case, Proposition
6 says that L(K(ω)) = 0 a.s.. We first estimate the
probabilities that a given point, and a given pair of
points, are in Kn(ω).

Lemma 7. (a) For all x ∈ [0, 1]d and n = 1, 2, · · · ,

P (x ∈ Kn(ω)) =
n∏

i=1

(1− β(d)rd
i ).

(b) Given ε > 0 there exists a constant L > 0 such
that

P (x ∈ Kn(ω), y ∈ Kn(ω))
p2

n

≤ Ld(x, y)−
β(d)cd

p
(1+ε)

.

(1)
for all x, y ∈ [0, 1]d and n = 1, 2, · · · , where pn =∏n

i=1(1− β(d)rd
i ).
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Proof. (a) Since each ωi is uniformly distributed on
[0, 1]d, it follows that for all x ∈ [0, 1]d and i =
1, 2, · · · ,

P (x ∈ Bi(ω)) = β(d)rd
i .

Note that x ∈ Kn(ω) if and only if x /∈ Bi(ω) for all
i = 1, 2, . . . , n. But the events (x /∈ Bi(ω))n

i=1 are
independent, so

P (x ∈ Kn(ω)) =
n∏

i=1

P (x /∈ Bi(ω))

=
n∏

i=1

(1− β(d)rd
i ).

(b) It follows from the O’Stolz Theorem [25] and∑∞
i=1 rd

i = ∞ that

log pn =
n∑

i=1

log(1− β(d)cd

ipd
)

∼ −
n∑

i=1

β(d)cd

ipd

∼ −β(d)cd log n. (2)

For any ε > 0, we have from (2) that there exists a
constant L1 > 0 such that for all n = 1, 2, · · · ,

n∏

i=1

(1− β(d)cd

ipd
) = pn ≥ L1n

−β(d)cd(1+ε). (3)

For any x, y ∈ [0, 1]d, we consider the positions of
ωi when Bi(ω) excludes both x and y. Since ωi is
uniformly distribution on [0, 1]d, we have

P (x /∈ Bi(ω), y /∈ Bi(ω)) ≤
{

1− β(d)cd

ipd d(x, y) ≤ c
ip ,

(1− β(d)cd

ipd )2 d(x, y) > c
ip .

Thus

P (x /∈ Bi(ω), y /∈ Bi(ω))

(1− β(d)cd

ipd )2
≤

{
(1− β(d)cd

ipd )−1 d(x, y) ≤ c
ip ,

1 d(x, y) > c
ip .

By (3) and the independence of random open balls are
moved, we have

P (x ∈ Kn(ω), y ∈ Kn(ω))
p2

n

=

=
n∏

i=1

P (x /∈ Bi(ω), y /∈ Bi(ω))

(1− β(d)cd

ipd )2

≤
∏

i:d(x,y)≤ c
ip

(1− β(d)cd

ipd
)−1

≤ (pi(d(x,y)))
−1

≤ L−1
1 (i(d(x, y)))β(d)cd(1+ε),

where i(d(x, y)) is largest positive integer i such that
d(x, y) ≤ c

ip . From c
(k+1)p / c

kp → 1(k → ∞), we
have c

i(d(x,y))p ∼ d(x, y). So there exists a suitable
constant L > 0 such that

P (x ∈ Kn(w), y ∈ Kn(w))
p2

n

≤ Ld(x, y)−
β(d)cd

p
(1+ε)

For any A ⊂ Rd, we define the sequence of ran-
dom measures

µn(A) = p−1
n L(A ∩Kn(ω)), n = 0, 1, · · · . (4)

Then we have

Lemma 8. {µn}n≥1 is a random martingale measure.

Proof. It is clear that µ0 is a finite, deterministic mea-
sure with bounded support and µn is almost surely
absolutely continuous with respect to L for all n. Let
Fn denote the σ-field underlying the random positions
of the centers of B1(ω), B2(ω), . . . , Bn(ω). Then
{Fn}n≥1 is an increasing sequence of sub σ-field of
F and µn is Fn-measurable. For each Borel set A,
we have by independence of random open balls are
moved that

E(µn+1(A)|Fn) = E(p−1
n+1L(A ∩Kn(w)

∩([0, 1]d −Bn+1(w))|Fn)

= p−1
n+1L([0, 1]d −Bn+1(w))
L(A ∩Kn(w))

= p−1
n+1(1−

β(d)cd

(n + 1)pd
)pnµn(A)

= µn(A).

Thus {µn(A)}n≥0 is a non-negative martingale for
each Borel set A ⊂ Rd. Furthermore, we have
µn+1(A) ≤ µn(A) a.s. for all A ⊂ Rd and n since
Kn+1(ω) ⊂ Kn(ω) for all ω. By the definition of ran-
dom martingale measure, the desired conclusion fol-
lows.
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By Lemma 5, the sequence µn in Lemma 8 is
weakly convergent a.s.. Denoting the limit by µ. Then

Lemma 9. µ(K(w)) > 0 is of positive probability.

Proof. Note that the inequality (1) implies that

E(χKn(w)×Kn(w)(x, y))
p2

n

=
P (x ∈ Kn(w), y ∈ Kn(w))

p2
n

≤ Ld(x, y)−
β(d)cd

p
(1+ε)

. (5)

Choose ε such that β(d)cd

p (1 + ε) < 1. It follows from
(4) and (5) that

E((µn([0, 1]d))2) = p−2
n E((L(Kn(ω)))2)

= p−2
n E(

∫∫
χKn(ω)(x)× χKn(ω)(y)dxdy)

= p−2
n E(

∫∫
χKn(ω)×Kn(w)(x, y)dxdy)

= p−2
n E(E(χKn(ω)×Kn(ω)(x, y)))

≤ L

∫

[0,1]d

∫

[0,1]d
d(x, y)−

β(d)cd

p
(1+ε)

dxdy < ∞.

Thus {µn([0, 1]d)}n≥0 is a bounded martingale. By
Lemma 4, the desired result follows.

The proof of Theorem 1. Given δ > 0 and let
K(ω)δ denote the δ-neighborhood of K(ω), that is,

K(ω)δ = {x ∈ Rd : |x−y| ≤ δ for some y ∈ K(ω)}.

Denoting the largest positive integer with rk > δ by
k(δ). Let B̃j(ω) be an open ball with the same center
as Bj(ω) and radius rj − δ for j ≤ k(δ). Then if
x ∈ K(ω)δ and j ≤ k(δ), then x /∈ B̃j(ω). By the
independence of the random open balls are removed,
we have that for any x ∈ [0, 1]d,

P (x ∈ K(ω)δ) ≤ P (x /∈
k(δ)⋂

j=1

B̃j(ω))

=
k(δ)∏

j=1

P (x /∈ B̃j(ω))

≤
k(δ)∏

j=1

(1− β(d)(
c

jp
− δ)d). (6)

By the maximality of k(δ), we have c
k(δ)p ∼ δ. Thus

log
k(δ)∏

j=1

(1− β(d)(
c

jp
− δ)d)

=
k(δ)∑

j=1

log(1− β(d)(
c

jp
− δ)d)

≤ −
k(δ)∑

j=1

β(d)(
c

jp
− δ)d = −β(d)

k(δ)∑

j=1

(
c

jp
− δ)d

∼ −β(d)cd

k(δ)∑

j=1

1
j
∼ −β(d)cd log k(δ)

∼ β(d)cd

p
log δ. (7)

Given ε > 0, it follows from (6) and (7) that there
exists a constant M such that for any δ ≤ 1,

E(L(K(ω)δ)) = P (x ∈ K(ω)δ) ≤ Mδ
β(d)cd

p
−ε

.

Thus

E
( ∑

δ=2−k:k=1,2,···
L(K(ω)δ)δ

−β(d)cd

p
+2ε

)

≤ M
∑

δ=2−k:k=1,2,···
δε < ∞.

This implies that

P

( ∑

δ=2−k:k=1,2,···
Ld(K(w)δ)δ

−β(d)cd

p
+2ε

< ∞
)

= 1

and with probability one there exists a constant
M ′ > 0 such that for any positive integer k, we

have L(K(w)2−k)(2−k)−
β(d)cd

p
+2ε ≤ M ′, and thus

L(K(ω)δ)δ
−β(d)cd

p
+2ε is bounded for any 0 < δ < 1.

It follows from the (2.5) of [10] that

P (dimBK(ω) ≤ d− β(d)cd

p
+ 2ε) = 1.

Since ε is arbitrary, we conclude that

P (dimBK(ω) ≤ d− β(d)cd

p
) = 1.

It remains to determine the lower bound. Let ε >
0 and µn and µ be the random measures on Kn(w)
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and K(w) introduced as before. By Lemma 5 and
Fatou’s Lemma [24], and using (5), we have

E
( ∫∫

|x− y|−sdµ(x)µ(y)
)

= E

(
lim

k→∞

∫∫
|x− y|−sdµn(x)µn(y)

)

= lim inf
n→∞ E

( ∫∫
|x− y|−sdµn(x)µn(y)

)

= lim inf
n→∞ p−2

n E
( ∫∫

|x− y|−s

χKn(w)×Kn(w)(x, y)dxdy

)

≤ L

∫

[0,1]d

∫

[0,1]d
d(x.y)−sd(x, y)−

β(d)cd

p
(1+ε)

dxdy

= L

∫

[0,1]d

∫

[0,1]d
d(x, y)−(s+

β(d)cd

p
(1+ε))

dxdy

< ∞

provided that s < d− β(d)cd

p (1+ ε). This implies that

for any s < d− β(d)cd

p ,

P

( ∫ ∫
|x− y|−sdµ(x)µ(y) < ∞

)
= 1.

By Lemma 2 and Lemma 9, P (dimH K(ω) ≥ d −
β(d)cd

p ) > 0. This completes the proof.
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